Sunday 26 January 2014

Charles Babbage

Charles Babbage - 1860.jpgCharles Babbage, FRS (26 December 1791 – 18 October 1871) was an English polymath. He was a mathematician, philosopher, inventor and mechanical engineer, who is best remembered now for originating the concept of a programmable computer.
Considered a "father of the computer", Babbage is credited with inventing the first mechanical computer that eventually led to more complex designs. His varied work in other fields has led him to be described as "pre-eminent" among the many polymaths of his century.

Parts of Babbage's uncompleted mechanisms are on display in the London Science Museum. In 1991, a perfectly functioning difference engine was constructed from Babbage's original plans. Built to tolerances achievable in the 19th century, the success of the finished engine indicated that Babbage's machine would have worked.

"Babbage principle"
In Economy of Machinery was described what is now called the "Babbage principle". It pointed out commercial advantages available with more careful division of labour. As Babbage himself noted, it had already appeared in the work of Melchiorre Gioia in 1815. The term was introduced in 1974 by Harry Braverman. Related formulations are the "principle of multiples" of Philip Sargant Florence, and the "balance of processes".
What Babbage remarked is that skilled workers typically spend parts of their time performing tasks that are below their skill level. If the labour process can be divided among several workers, labour costs may be cut by assigning only high-skill tasks to high-cost workers, restricting other tasks to lower-paid workers. He also pointed out that training or apprenticeship can be taken as fixed costs; but that returns to scale are available by his approach of standardisation of tasks, therefore again favouring the factory system. His view of human capital was restricted to minimising the time period for recovery of training costs.


Publishing

Another aspect of the work was its detailed breakdown of the cost structure of book publishing. Babbage took the unpopular line, from the publishers' perspective, of exposing the trade's profitability. He went as far as to name the organisers of the trade's restrictive practices. Twenty years later he attended a meeting hosted by John Chapman to campaign against the Booksellers Association, still a cartel.

Influence

It has been written that "what Arthur Young was to agriculture, Charles Babbage was to the factory visit and machinery".Babbage's theories are said to have influenced the layout of the 1851 Great Exhibition, and his views had a strong effect on his contemporary George Julius Poulett Scrope. Karl Marx argued that the source of the productivity of the factory system was exactly the combination of the division of labour with machinery, building on Adam Smith, Babbage and Ure. Where Marx picked up on Babbage and disagreed with Smith was on the motivation for division of labour by the manufacturer: as Babbage did, he wrote that it was for the sake of profitability, rather than productivity, and identified an impact on the concept of a trade. John Ruskin went further, to oppose completely what manufacturing in Babbage's sense stood for. Babbage also affected the economic thinking of John Stuart Mill.

George Holyoake saw Babbage's detailed discussion of profit sharing as substantive, in the tradition of Robert Owen and Charles Fourier, if requiring the attentions of a benevolent captain of industry, and ignored at the time. The French engineer and writer on industrial organisation Léon Lalande was influenced by Babbage, but also the economist Claude Lucien Bergery, in reducing the issues to "technology". William Jevons connected Babbage's "economy of labour" with his own labour experiments of 1870. The Babbage principle is an inherent assumption in Frederick Winslow Taylor's scientific management.

Natural theology

In 1837, responding to the series of eight Bridgewater Treatises, Babbage published his Ninth Bridgewater Treatise, under the title On the Power, Wisdom and Goodness of God, as manifested in the Creation. In this work Babbage weighed in on the side of uniformitarianism in a current debate. He preferred the conception of creation in which natural law dominated, removing the need for "contrivance". The book is a work of natural theology, and incorporates extracts from related correspondence of Herschel with Charles Lyell. It was quoted extensively in Vestiges of the Natural History of Creation.
Babbage put forward the thesis that God had the omnipotence and foresight to create as a divine legislator. He could make laws which then produced species at the appropriate times, rather than continually interfering with ad hoc miracles each time a new species was required. In Vestiges the parallel with Babbage's computing machines is made explicit, as allowing plausibility to the theory that transmutation of species could be pre-programmed.

Plate from the Ninth Bridgewater Treatise, showing a parametric family of algebraic curves acquiring isolated real points

Babbage has been seen as influenced by Indian thought, in particular Indian logic; one possible route would be through Henry Thomas Colebrooke. Mary Everest Boole claims that Babbage was introduced to Indian thought in the 1820s by her uncle George Everest:

Some time about 1825, [Everest] came to England for two or three years, and made a fast and lifelong friendship with Herschel and with Babbage, who was then quite young. I would ask any fair-minded mathematician to read Babbage's Ninth Bridgewater Treatise and compare it with the works of his contemporaries in England; and then ask himself whence came the peculiar conception of the nature of miracle which underlies Babbage's ideas of Singular Points on Curves (Chap, viii) – from European Theology or Hindu Metaphysic? Oh! how the English clergy of that day hated Babbage's book!


Death


Charles Babbage's brain is on display at The Science Museum

Babbage lived and worked for over 40 years at 1 Dorset Street, Marylebone, where he died, at the age of 79, on 18 October 1871; he was buried in London's Kensal Green Cemetery. According to Horsley, Babbage died "of renal inadequacy, secondary to cystitis." He had declined both a knighthood and baronetcy. He also argued against hereditary peerages, favoring life peerages instead.
In 1983 the autopsy report for Charles Babbage was discovered and later published by his great-great-grandson. A copy of the original is also available. Half of Babbage's brain is preserved at the Hunterian Museum in the Royal College of Surgeons in London.The other half of Babbage's brain is on display in the Science Museum, London.

Grave of Charles Babbage at Kensal Green Cemetery

Computing pioneer


Part of Babbage's difference engine (#1), assembled after his death by Babbage's son, Henry Prevost Babbage (1824-1918), using parts found in his laboratory

Babbage's machines were among the first mechanical computers. That they were not actually completed was largely because of funding problems and personality issues.
Babbage directed the building of some steam-powered machines that achieved some modest success, suggesting that calculations could be mechanised. For more than ten years he received government funding for his project, which amounted to £17,000, but eventually the Treasury lost confidence in him.
While Babbage's machines were mechanical and unwieldy, their basic architecture was similar to a modern computer. The data and program memory were separated, operation was instruction-based, the control unit could make conditional jumps, and the machine had a separate I/O unit.

Legacy
In 2011, researchers in Britain embarked on a multimillion-pound project, "Plan 28", to construct Babbage's Analytical Engine. Since Babbage's plans were continually being refined and were never completed, they will engage the public in the project and crowd-source the analysis of what should be built. It would have the equivalent of 675 bytes of memory, and run at a clock speed of about 7 Hz. They hope to complete it by the 150th anniversary of Babbage's death, in 2021.

Advances in MEMs and nanotechnology have led to recent high-tech experiments in mechanical computation. The benefits suggested include operation in high radiation or high temperature environments. These modern versions of mechanical computation were highlighted in The Economist in its special "end of the millennium" black cover issue in an article entitled "Babbage's Last Laugh".

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

0 comments:

Post a Comment

 
Design by Free WordPress Themes | Bloggerized by Lasantha - Premium Blogger Themes | Justin Bieber, Gold Price in India